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The time evolution of the Ising model that describes shrinking domains is 
studied. A singly connected domain of Ising spins, embedded in a sea of the 
opposite phase, develops at T= 0 according to a dynamic rule that does not 
allow its perimeter to increase. At long enough times the domain disappears; we 
show that the average lifetime of such a domain is proportional to its area. We 
also consider the T= 0 dynamics of a single infinite quadrant. The area of the 
quadrant decreases during the time evolution, and we show that the area lost 
grows linearly with time. We solve a first passage time problem as well. That is, 
we calculate the average time it takes for the area lost to reach a given value 
for the first time. Lastly, we map the infinite quadrant model onto a diffusion 
problem with exclusion in one dimension. This latter problem is mapped onto 
a critical six-vertex model. 
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1. I N T R O D U C T I O N  

D y n a m i c s  o f  sys tems  q u e n c h e d  f r o m  a h igh  t e m p e r a t u r e  t h r o u g h  an o r d e r -  

d i s o r d e r  t r a n s i t i o n  exh ib i t  un ive r sa l  features .  O r d e r e d  d o m a i n s  a p p e a r  in 

the  in i t ia l ly  d i s o r d e r e d  sys tem fo l lowing  the  quench .  T h e  sh r inkage  a n d  

g r o w t h  of  these  d o m a i n s  at  la te  s tages  o f  the  e v o l u t i o n  h a v e  been  ex ten-  

sively i nves t i ga t ed  expe r imen ta l l y ,  (1~ numer i ca l ly ,  (2 5) a n d  analyt ica l ly .  ~6-8) 

Typica l ly ,  it is f o u n d  tha t  the  l inear  d o m a i n  size L of  the  loca l ly  d o m i n a n t  

phase  g rows  wi th  t ime  as L ~ t ~. T h e  e x p o n e n t  x d e p e n d s  on  the sys tem 

cons ide red ,  in a way  tha t  is n o t  c o m p l e t e l y  u n d e r s t o o d .  O n e  i m p o r t a n t  
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parameter that influences the growth kinetics is the nature of physical con- 
servation laws. For  example, the exponent x depends on whether the order 
parameter is conserved or not. In Ising like systems x = 1/2 when the order 
parameter is not conserved, while conservation of the order parameter 
slows the dynamics considerably. In that case it is widely accepted (s'9) that 
x = 1/3. 

In this paper we present a rigorous calculation of x for a special case 
of the two-dimensional Ising model without conservation laws. We find 
x = 1/2, in accordance with earlier evidence. This result has been obtained 
analytically in a number of studies, (6-s) but to the best of our knowledge, 
it has not yet been demonstrated rigorously starting from a microscopic 
model. 

The paper is organized as follows: First we review (in Section 2) some 
of the existing evidence for the x = 1/2 result, and motivate simplifications 
that will be introduced in order to enable a rigorous calculation. In 
Section 3 we present our model system and its solution. We also find a 
mapping between our model and a one-dimensional diffusion problem in 
which black and white particles occupy an infinite line; the dynamical 
moves are exchanges of black and white particles which are located at 
neighboring sites. ~176 In the last part of Section 3 the diffusion problem is 
mapped onto a critical six-vertex model. Our results are summarized in 
Section 4. 

2. EV IDENCE FOR x---1/2 IN IS ING-LIKE S Y S T E M S  

In this section we mention some of the important theoretical and 
experimental work on the subject. A more complete account of existing 
studies in the field can be found in review articles on dynamics near first- 
order phase transitions. (11) 

Lifshitz (6) and later Cahn and Allen (7) (LCA) derived the x =  1/2 
growth law starting from the Langevin equation associated with a time- 
dependent Ginzburg-Landau model: 

c?~b(r, t) F c~F 
- -  + { ( r ,  t )  

~t 6r t) 

This equation describes the evolution of the order parameter ~b, and reflects 
the tendency to minimize the coarse-grained free-energy functional F 
during the evolution of the system. ((r, t) is a Gaussian white noise source. 
LCA assumed that a typical configuration of the system at long times con- 
sists of large domains separated by narrow interfaces. In the bulk of each 
of the domains the order parameter takes one of its equilibrium values, 
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while at the interfaces it interpolates smoothly between these values. The 
dynamics at long times is then controlled by the evolution of the domain 
boundaries. One can write down a phenomenological evolution equation 
for a single boundary starting from the Langevin equation for the order 
parameter, and neglecting the noise term. LCA showed that the dynamics 
of such a boundary is driven by curvature, which readily gives the expected 
result. Valls and Mazenko (4) studied the growth kinetics of the time- 
dependent Ginzburg-Landau model mentioned above, by direct numerical 
solution of the associated Langevin equation with the noise term. Their 
results are consistent with the LCA theory. Similar results were obtained 
from renormalization group, (12) Monte Carlo renormalization group, (L3) 
and finite-size scaling (5) calculations as well. 

A very simple heuristic way to get the exponent x is to consider the 
shape of a domain of a minority phase surrounded by a sea of the majority 
phase. We expect the linear scale of the surrounding domain L to grow 
with time as L ~  t x. Let us assume that the boundary that defines the 
minority domain is fairly circular, such that the radius of the domain is 
between R and R + 6R, where 6R ~ R. The system will show a tendency to 
decrease the surface free energy. As a result, the change of the domain 
volume V with time is determined by two competing effects: It will locally 
shrink at the convex parts of the interface (near the tips), but will grow at 
the concave regions (near the dips). The rate of increase (decrease) of V 
with time will be proportional to the surface area of the concave (convex) 
regions. Hence 6VflSt ~ -c~Ra-1/cSR, where d is the dimensionality of the 
system. Using the relation V~ R d, we get 

6R/bt  ,,~ - 1/R 

The solution of this equation is 

2 2 R o - R  a t  

where R 0 is the initial radius of the shrinking domain. This gives rise to two 
equivalent results. First, that the lifetime of a shrinking domain of initial 
radius R o is proportional to Ro 2. Second, that the typical length scale of the 
majority domain, defined as L==-(R~-R2)  I/2, grows as L,,~t  ~/2, i.e., 
x = 1/2. 

Experiments on Ising-like systems support the theoretical prediction 
outlined above. In a typical experiment one studies the ordering process in 
binary alloys, quenched from a high temperature to a temperature below 
the order-disorder transition. For example, Morris et aL, Hashimoto et aL, 
and Noda etaL (1) measured domain growth in Cu3Au alloy, by X-ray 
scattering and electron microscopy. They found that the average domain 
size grows as t ~/2. 
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These binary alloys are modeled as Ising antiferromagnets. Phani 
et  al., Sahni et  al., and Kaski et  al. (2] performed simulations of this model 
in two and three dimensions, using spin-exchange Kawasaki dynamics. (14~ 
Although the total magnetization is then conserved, the (antiferro- 
magnetic) order parameter is not, and their results agree with the experiments 
and the theoretical predictions. Sahni et  al. (3] simulated the same model 
using Glauber single-spin-flip dynamics (15) as well. They found the same 
qualitative result. 

The ferromagnetic Ising model exhibits the same behavior. (~6) In Fig. 1 
we show results of simulations of this model on a 64 x 64 square lattice 
with periodic boundary conditions. Glauber dynamics was used. The 
system was simulated at T =  0.7Tc ( T c  being the infinite lattice critical tem- 
perature), starting from a random initial state (each of the spins was 
assigned a value of + 1 with probability 1/2). Snapshots of the system at 
later times are shown, with regions of + ( - )  spins drawn in black (white). 
Following the evolution of the system, we see that at long times there is a 
single large black domain surrounded by a white sea. There are small black 

t=0 t=2 t=5 

t=10 t=20 t=40 

i 

t=60 t=80 t=100 

1 
i 

L | 
i 

Fig. 1. Simulation of a 64 x 64 Ising lattice at T= 0.7Tc, starting from a random initial con- 
dition. Time is measured in Metropolis sweeps. Periodic boundary conditions were used; the 
structure seen at t >/20 is therefore a single domain. At t = 100 the domain has disappeared 
and characteristic equilibrium fluctuations are present. 
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regions inside the sea, whose size is of the order of the average equilibrium 
size of the minority phase at T =  0.7To. The black domain then shrinks until 
it reaches this average equilibrium size. Thus, we are motivated to make a 
simplifying assumption, that at long times we have to deal with the 
shrinkage of a single domain of the minority phase in a sea of the dominant 
phase. We will argue in the next section that the physics at finite T <  Tc is 
the same as at T =  0. The T =  0 dynamics of the single domain reduces to 
a one-dimensional problem which is easier to solve. Such contour dynamics 
at finite temperature were studied by Sokal and Thomas. (17) 

3. D Y N A M I C S  OF A SINGLE D O M A I N  AT T = 0  

We first define the model we solved and present the solution, e.g., 
calculate the average lifetime of  a domain at T=  O. We also solve a problem 
in which the finite domain of opposite spins is replaced by an infinite 
quadrant. Finally, this problem is mapped onto a many-particle diffusion 
problem in one dimension, which, in turn, is equivalent to a critical six- 
vertex model. 

3.1. Finite Domain Model:  Def in i t ion and Solut ion 

We turn now to study the manner in which a single finite domain of, 
say, ( + )  spins, in an infinite sea of ( - ) ,  develops in time. Numerical 
simulations have established (3) that for large domains the area decreases 
linearly with time, i.e.. 

A = A o - ~ t  (1) 

Obviously, this relationship implies that the lifetime of a domain is propor- 
tional to its area. This linear dependence holds at subcritical temperatures 
T < T c ,  including T = 0 .  Thus, the physics of shrinking domains is, 
apparently, the same. 

Let us present the results of simulations performed at T =  0, on an 
initial state that contained a 60 x 60 square domain, in a sea of opposite 
spins. In the course of the simulation a spin is selected at random, and an 
attempt to flip it is made. This "move" is accepted if it does not result in 
an increase of the energy. The energy is equal to the number of broken 
bonds. Only those moves will be accepted that either leave this number 
invariant or reduce it. Thus, the only possible moves involve spins on either 
side of the domain boundary. The dynamics is therefore restricted-to 
changing the contour of the domain in a manner that either reduces its 
length or leaves it constant. Initially only one of the four corner spins of the 
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domain can flip. Such a flip creates steps on the vertical and horizontal 
boundaries of the domain. These steps are free to move back and forth with 
equal probability. This diffusive motion of the steps does not change the 
length of the domain boundary, and hence the energy remains unchanged. 
On the other hand, when two steps on the same boundary approach one 
another from opposite sides, they may annihilate, thereby reducing the 
energy. This last process is irreversible at T =  0. Typical configurations, as 
obtained at various times, are shown in Fig. 2. We also show, in Fig. 3, the 
area A as a function of time t, measured in units of "sweeps"; in a single 
time step the number of at tempted flips equals the total number of spins in 
the system. Figure 3a presents A(t) for a single simulation, whereas in 
Fig. 3b we show the result of averaging over 20 systems developing from 
the same initial condition. The linear dependence on t is clearly seen; 
deviations at late times are due to finite-size effects that take over when the 
domain size is small. 

The dynamic problem discussed above is still not soluble analytically. 
Therefore we simplify it further by considering the same dynamic problem 
with mirror boundary conditions. That  is, we perform the same simulation 
procedure as described above, but the spin to be flipped is selected from a 

t=O t=250 t=500 

r - I 

L 

t=750 t :1000 

1 

Fig. 2. A finite square domain embedded in an infinite sea of opposite spins shrinks at T= 0. 
The physics is the same at nonzero temperature as at T= 0; and since the latter case is more 
readily solvable analytically, we focus our attention on it. 
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single quadrant  of  the plane, and then if it is flipped, its three images on 
the three other  quadrants  are also flipped. These images are obtained by 
reflections with respect to mirror  planes placed on the x and y axes. Thus, 
we follow the domain  in a single quadrant  only. Whenever  a step that  
moves along a bounda ry  reaches a mirror,  it is annihilated, since, due to 
the boundary  conditions, an opposite "antistep" is reaching the mirror  at 
the same time. 

Contours  obtained in a typical run are shown in Fig. 4; the initial 
quadran t  contained a 30 x 30 domain.  The area versus time, averaged over 

2 0 0 0  --  " ~  - -  

iOOC 

ol . . . .  . . . .  

0 200 400 600 800 i000 
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t 

Fig. 3. (a) The area of the shrinking domain of Fig. 2, as a function of time. When 20 
simulations (starting from the same initial state) are averaged, the smooth linear function (b) 
is obtained. 

822/58/'3-4-19 
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L m 
Fig. 4. Typical simulation of a single quadrant, with the boundary conditions discussed in 

the text. 

60 runs, is shown in Fig. 5. The linear law is again evident, and the 
resemblance to Fig. 3 indicates that the physical origin of this law has not 
been lost by working with a single quadrant. 

The quantity we calculated for this problem is VA, the average death 
time of  a domain of  initial area A. That is, we calculate how many time 
steps are needed until the domain (quadrant) of initial area A shrinks com- 
pletely and disappears. In order to calculate this quantity we first map the 
dynamics of the contour as described above onto a random walk problem, 
for which a classical ruin problem (see, e.g., ref. 18) (average duration of 
the game) is solved. 

To see how this mapping comes about, consider Fig. 6, which presents 
a typical contour obtained from an initial state of an L x N quadrant. We 
associate with each horizontal row j a walker whose position lj marks the 
rightmost edge of the contour on that row. At all times the walkers remain 
ordered: 

O<~IN<~IN_I <~ . . .  ~12 <~11 (2) 

The dynamics of our domain is reproduced by the following rules: 

1. Randomly pick one walker j (out of N). 

2. If l i=0 ,  do not move 



Domain Grow th  Kinetics 693 

, ~ '  ' I . . . .  I . . . .  I . . . .  I . . . .  I 

I 
V - 

4 0 0 !  ~ - 

0 200 400 600 800 i000 

t 

Fig. 5. Area of a shrinking finite quadrant, averaged over 60 runs. 
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Fig. 6. Mapping the shrinking quadrant problem to one of N random walkers. Each walker 
is represented by a heavy vertical line segment, allowed to walk horizontally. The walkers are 
indexed on the left side of the vertical axis. Positions of the walkers are indicated below the 
horizontal axis. The figure shows a snapshot taken after walkers k + 1 ..... N have arrived at 
! = 0, and are "stuck" there. 
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3. If / j>0,  with probability 0<p~< 1/2 attempt  to move walker 
j to l j+ 1, or with same probability to l j - 1 .  Note that with 
probability 1 -  2p no attempt is made to move the walker. 

4. An attempt is successful if the new position does not violate the 
ordering, Eq. (2). If the attempt failed, the walker stays at lj. 

5. The first walker ( j =  1) is not allowed to move to the right (i.e., I1 
can only decrease). 

These rules reproduce precisely the dynamics of the shrinking domain 
on one quadrant, with one minor modification: The basic time step here 
involves an attempt to flip the "right" spin in each row, and hence N of 
these steps are equivalent to N L  spin-flip attempts that constitute a single 
Monte Carlo sweep of the spin system. Also, allowing p < 1/2 changes the 
result by a trivial rescaling of time. 

We calculate r(I1, 12, 13,..., lk, 0, 0 ..... 0), the average time it takes for all 
the walkers to reach the origin, starting from an initial state in which 
walkers j = 1, 2 ..... k are at positions I i > 0, and walkers j = k + 1, k + 2 ..... N 
at lj = 0. This average ruin time is calculated by writing down a recursion 
for it. To compress notation, we omit the O's from the argument of r. The 
recursion takes the form 

N - k  
r(l~,..., l~) = - - f -  I-~(/~, 12,..., lk) + 1 ] 

1 - p  
+ T {r + 1 ] 

P [ ' r (max( l l -  1, 12), 12... lk)+ 1] +N 

1--2p ~ [~(11, I2 ..... / k ) + l ) ]  
+ N j = 2  

k 
P + ~  ~ [r(ll ,  12,..., min(/j.+ 1, ( j- l)  ..... Ik)+ 13 

j = 2  

k 
P + ~  ~ [~(/1,/2 ..... m a x ( / j - 1 , / j + l )  ..... / k ) + l ]  (3) 

j = 2  

The first term represents the events of picking one of the N - k  walkers 
that have already arrived at lj = O. The second and third terms arise from 
choosing walker number 1. The second term represents not moving it, or 
attempting to move it right. Since it cannot move right, the second term 
contains r(l~, 12 ..... lk), whereas the third term, which represents an attempt 
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to move it left, allows the replacement ll ~ l~ - 1, provided I1 - 1 >~ 12. The 
next term corresponds to choosing one of walkers j = 2, 3 ..... k, but deciding 
not to move it. The last two terms describe attempts to move walkers 
j = 2, 3,..., k right and left, again in a manner that ensures that the ordering 
of Eq. (2) is not violated. 

After some algebra this equation can be rewritten as 

( 2 k -  1) r(ll ,  12 ..... lk) 

= z(ll ,  12,..., l k -  1 ) 

k 

+ Z Z(ll, l; ..... min(lj + 1, lj_l),..., lk) 
j = 2  

k - - I  N 
+ ~ v(li, 12 ..... max( b -  1, lj+ 1),-.., zk) + -  (4) 

j=l  P 

At this point we guess the solution 

~(l~, l~,..., l~) = -  x ~ /j (5) 
P j = l  

Substituting (5) easily verifies that indeed it solves (4). The boundary 
condition v(0, 0,..., 0) = 0 is also satisfied. 

Obviously, when properly normalized (i.e., divided by N; see above) 
our solution has the form 

l 
T ( l l ,  12,. . .  ) = 2 A(ll, 12,...) (6) 

P 

where A is the area of the domain. Hence we have demonstrated that the 
average lifetime o f  a domain is proportional to its area. 

This result is not completely obvious to interpret in terms of our 
model of N diffusing particles. The average lifetime of a single particle that 
gets annihilated at distance L from the origin is proportional to L 2. In the 
present problem the hard core repulsion between neighboring particles and 
the fact that the last one could only move in one direction change this 
behavior to NL. 

3.2. D y n a m i c s  of  an In f in i t e  Q u a d r a n t  

We now turn to describe the solution of another, closely related 
problem. Consider an initial state of an infinite system, in which in three 
quadrants of the plane the spins are in state ( - )  and in the fourth 
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quadrant in the state (+) .  At T =  0 such an initial state will develop in 
time in a manner that leaves invariant the length of the (infinite) contour 
of this "domain." Initially only the single corner spin can flip, but at later 
times we can have again many steps running along both horizontal and 
vertical boundaries. A typical configuration of the contour is shown in 
Fig. 7. For  this problem there is no irreversible step, as we had before, that 
reduces the area of the domain. Nevertheless, if we consider At, the area 
"lost" as a function of time, we note that it executes a (complex) random 
walk with an infinite barrier at A~--0. Hence we expect the average At to 
increase with time. Figure 6 represented the finite domain dynamics with 
mirror plane symmetry. It may also represent the infinite quadrant 
problem; the area lost At will replace the area of the finite domain, and the 
walkers will tend to move to the right rather than to the left. 

The problem of the infinite quadrant can be viewed as the limit of 
finite problems with increasing number of walkers N. We will first define 
the problem with a finite number of walkers, then solve it and take the 
limit N ~ ~ .  Consider, as in the finite domain case, N walkers, which 
remain ordered at all times according to Eq. (2). In the finite domain 
problem we had a sink for walkers at I = 0, and the first walker was not 
allowed to move to the right. The new problem is different in that the sink 

J J ,, j ~ J  j ~  , J f  

Fig. 7. The area lost At at the corner of an infinite shrinking quadrant.  Vertical and horizontal 
edges of the domain 's  boundary  are projected onto a diagonal line, giving rise to an assignment 
of black and white particles. Every change of the domain 's  contour maps  onto an exchange 
of neighboring particles of different colors. 
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is eliminated, and the condition on the first walker is replaced by a restric- 
tion on the Nth walker, which is not allowed to move to the left. The 
dynamic rules for the new problem can be summarized as follows: 

1. Randomly pick one walker j (out of N). 

2. With probability 0 < p ~< 1/2, attempt to move walker j to lj + 1, or 
with same probability, to l j - 1 .  With probability 1 - 2 p ,  no 
attempt is made to move the walker. 

3. An attempt is successful if the new position does not violate the 
ordering, Eq. (2). If the attempt failed, the walker stays at lj. 

4. The Nth walker ( j =  N) is not allowed to move to the left (i.e., l u 

can only increase). 

Although this finite domain problem has an irreversible step (rule 4), 
it does approach the infinite domain model in the limit N ~ oo. In order to 
see that the irreversible step does not destroy the limit, consider the 
average time to(j) it takes until walker j ( j  = 1, 2,..., N) performs its first 
move. The irreversibility of moves of the Nth walker affects the dynamics 
only at times t > To(N ). We will show that after scaling To(N ) by N, it still 
diverges as N--, o% and hence as N is increased, the finite domain problem 
approaches the infinite quadrant dynamics. 

To prove that To(N) diverges, let us define a simpler model in which 
all the walkers can move only to the right. T0(j) is clearly bounded from 
below by ~o(J), the average time of the first move of walkerj  in the simpler 
model. From the definition of this model we have 

r o ( j ) = v o ( j - - 1 ) + f o ( 1 )  (7) 

since the j t h  walker cannot move before walker j -  I has moved. After the 
move of walker j -  l, the j th  walker is not restricted (at least until after its 
first move), and hence it will wait g0(1) time units before moving. Iterating 
Eq. (7) down to the first walker, we get 

go(J) = J'co( 1 ) (8) 

fo(1) can be calculated exactly: 

. ,  + . . .  ~o(1)=1 ~ + 2 .  1 P p p ] 2 p  
N] N 

= - - ~  '= 1 -  
P P __, N 
N U N /  p i = 0  k = O  k ~ O  i = k  

(9) 
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Using Eq. (8) in conjunction with Eq. (9) and scaling time by a factor of 
N, we get 

Zo(j)>~fo(j) =-J (10) 
P 

This implies that %(N)>~N/p, and therefore irreversible steps are not 
allowed in the limit N ~ oe. 

In what follows we calculate two quantities of the finite domain 
problem. The first one is the first passage time r~(ll ,  12,..., lu), the average 
time it takes for the area lost to reach the value A for the first time, starting 
from the initial configuration (/1, 12,"., IN) of the walkers, where the area 
lost is defined as 

N 

A~(t)- ~ lj(t) ( l l )  
/ =  1 

The second quantity is the average area lost as a function of time, (Al(t)). 
To calculate the first passage time, we use the same considerations 

that led to Eqs. (3) and (4). Equation (3) is now replaced by 

~(ll,/2,... ,/~) 
1 2p P D'~(ll + 1, 12,..., tN) + 1 ] - U [Z~A(l~,12 . . . . .  /N)+ 1]+~ 

j = l  

N 

+Nj=P -~2 [ ~ ( / 1 , / 2  ..... m i n ( / j + l , / j  1) ..... / • )+1 ]  

P [ r~( / l , /2  ..... max(lj--l, lj+l),...,lN)+l] 
+ N  j=l 

P [~(11 /2 ..... / ~ ) + l ]  + ~  (12) 

The first term represents the events of picking one of the N walkers, but 
deciding not to move it. The second term describes attempts to move the 
first walker to the right. This move is always allowed, and hence the term 
contains v~(ll + 1, 12,..., IN)" The third term arises from choosing one of 
walkers j = 2, 3 ..... N and attempting to move it right. The move is allowed 
if lj + 1 ~< lj 1. The next term, which represents an attempt to move one of 
the walkers j = 1, 2 ..... N -  1 to the left, allows the replacement lj --* l j -  1, 
provided l j -  1 ~> lj+ 1- The last term corresponds to an attempt to move the 
Nth walker to the left. Since this move is not allowed, the term contains 
v~(ll, 12,.--, IN)- 
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Algebraic manipulations of Eq. (12) lead to the simplified equation 

( 2 N -  1) r~(/l ,  12,..., lN) 

= "r/A(/1 -t- 1, 12,.." IN) 
N 

+ ~ r~(ll,  12 ..... min(Ij+ 1, lj_~) ..... lN) 
j ~ 2  

N 1 N 

+ ~ r~(l~,12 ..... m a x ( l j - l ,  li+l) ..... IN)+--  (13) 
j=l P 

As in the finite domain problem, we guess the solution 

j = l  

It is easy to verify that (14) indeed solves Eq. (13). The solution is valid 
only for initial configurations which satisfy the relation XjN1 lj~< A, and 
satisfies the boundary condition rtA([1, l 2 ..... IN) = 0 whenever zN= 1 l~ = A. 
Scaling time units by N, and setting the initial configuration to lj = 0 for 
j = 1, 2 ..... N, we get 

t 1 
~ = -  A (15) 

P 

We turn now to discuss the dependence of the average area lost 
(A l ( t ) )  on time. In order to do this, let us introduce W(f({lj}); t), the 
probability that the condition f({/ j})  is satisfied at time t. For example, 
W(lj=lj+l; t) is the probability that walkers j and j +  1 are at the same 
position at time t. Our strategy will be to find equations for W(lj= l; t), 
and then use them to calculate 

N 

(A l ( t ) )  = ~ ~ /W(lj=l; t) (16) 
/ =  I t 

Our dynamic rules allow us to express W(lj=l; t+ I) in terms of 
probabilities at an earlier time t: 

P W(lj =l, 12r t) w(/ ,  = l; t + 1) = w( / ,  = / ;  t) - - 9  

P W(ll l;t) P W(11=l+l ,  1 2 C l + l ; t  ) 
- - 9  = +-9 

P W([ 1 =[--  1; t) 
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P w(6=1, lj+ #l; t) W(lj=l; t+  1)=  W(lj=l; t ) - ~  1 

P w(1~=l, lj 1~l;t) 
N 

+~P W ( l j = l + l ,  l j + l ~ / + l ; t )  for 2<<.j<<.N-1 

+~P w(6=i- 1, tj ~ ~ 1 - 1 ; t )  

P W(IN = l, l~v r l; t) W(1N = l; t ~- 1 ) = W ( l  x .~- l; t)  - ~ 1 

- t - ~  p W ( I N = I -  I , I  u _ l  S & / -  l" (17) 

The negative terms correspond to situations where walker j was at position 
l at time t, but moved from there at time t + 1, while positive terms repre- 
sent cases where walker j moved to position l at time t + 1. Multiplying 
Eq. (17) by l and summing over all possible values of l, we obtain equa- 
tions for ( l j ( t)) ,  the average position of walker j at time t: 

P W(11=12; t) ( lx ( t+ 1))  = ( / l ( t ) )  +~ 

P w( 6 zj+ .t) ( l j ( t + l ) ) = { 6 ( t ) ) + ~  = 1, 

P w ( b = b  1;0 for 
N 

2 < . j < ~ N - 1  

(18) 

P P (IN(t+ 1))  = (lN(t) ) + ~ - -  ~(W(IN=IN_I;  t) 

In order to derive Eq. (18), we used the identities W(li=l,  !/+_~ #l;  t )+ 
W( lj = l, lj +_ l = l; t) = W( lj = l; t) and Y~I W( lj = l; t) = 1. 

When Eq. (18) is summed over all walkers, all 
correlation terms cancel and we get 

N 
< A , ( t + l ) ) =  ~ < / j ( t ) > = < A , ( t ) > +  p-- 

j=1 N 

Equation (19) can be used recursively to express <A~(t)> 
<Aj(0)>. Scaling time units by N, we obtain the final result: 

the two-particle 

(19) 

in terms of 

(Al( t )  ) = ~At(O) ) + pt (20) 



Domain Growth  Kinetics 701 

It was pointed out to us by Eugene R. Speer that this result can be 
obtained from a very simple argument. In any given configuration (see 
Fig. 6) only spins at corners of the interface can flip. There are two kinds 
of such corners, convex and concave. When a spin which is located at a 
convex corner is flipped, the area lost A t is reduced by 1, while a flip of a 
spin that sits at a concave corner increases At by 1. Since such flips occur 
with probability p per unit time, the rate of change of At obeys the 
equation 

d(At(t)) 
p(Nconcave-Nc . . . . .  ) (21) 

dt 

where N . . . . . .  (N . . . .  ave) is the number of convex (concave) corners (which 
depends on time). Clearly, in any allowed configuration there is an excess 
of exactly one concave corner, and hence Eq. (21) reduces to 

d(Al(t)) 
dt P (22) 

which readily leads to Eq. (20). This argument does not hold in the finite 
domain problem with the sink. It fails for long enough times, when the 
configuration l j= 0 for j =  1 ..... N appears with finite probability. In this 
configuration, Eq. (22) is not valid, and hence the argument breaks down. 

Since both of our results [Eqs. (14) and (20)J do not depend on N, 
they are valid in the limit of an infinite quadrant. In spite of the simplicity 
of these results, the time evolution of the system is very complicated, as can 
be seen from the behavior of the position of a single walker with time. This 
behavior is completely different in the finite- and infinite-N problems. Con- 
sider the difference Dj( t ) - ( l j+ i ( t ) ) - ( l j ( t ) ) .  In the case N = 2  this 
variable performs a simple random walk with a reflecting barrier at 0. 
Therefore, as t --* ~ ,  D diverges as x / t .  The presence of other walkers can 
only slow down the increase of D with time, and hence 

lim Dj(t) = 0 (23) 

In order that the area lost will grow linearly with time, each of the walkers 
must have a finite velocity in the long-time limit. Combining this observa- 
tion with Eq. (23), we conclude that in this limit all the walkers move with 
the same velocity, 

v =piN (24) 

This finite velocity is a consequence of the irreversible steps in the finite 
domain dynamics. As expected from the fact that there is no irreversibility 
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in the infinite-N limit, the velocity v vanishes in this limit, leading to a com- 
pletely different dependence of the position of a single walker on time. 
However, the result for the area lost still holds, and implies that in the 
long-time limit (lj(t)) grows as x/~, rather than linearly. At any given 
time t, the average number of walkers that have already started to move 
grows as x f t  as well, leading to the desired linear dependence of At on 
time. 

Similar infinite quadrant models were solved by Rost (19~ and Marchand 
and Martin, (2~ who studied the dynamics of domain boundaries in the 
presence of magnetic fields. Their solutions are not valid for the case of no 
external field, which is the problem that we considered. 

3.3. Mapping  onto Di f fusion in One Dimension,  and the six- 
Ver tex  Model  

It is interesting to note that the last problem, of a shrinking infinite 
quadrant, maps onto a fairly widely studied (1~ many-body diffusion 
problem in one dimension. Namely, consider a case of black and white par- 
ticles arranged initially so that all sites x > 0 are occupied by black and all 
sites with x < 0 by white particles. Now allow a diffusion process in which 
exchange of black and white particles that occupy neighboring sites is the 
basic move. That is, pick a pair of neighboring sites, and exchange, with 
probability p, the two particles that occupy the sites picked. If the two par- 
ticles are of the same color, such an exchange has no effect on the particle 
configuration; only exchange of black and white particles matters. An alter- 
native interpretation of the same problem views the black particles as "par- 
ticles" and the white ones as "holes." With this interpretation exchange of 
a neighboring pair of different colors is viewed as hopping of a particle 
onto an empty site. 

Figure 7 demonstrates how every configuration of the contour of the 
shrinking quadrant described above is mapped to an assignment of par- 
ticles on a line. The particle configuration is obtained by projecting the 
contour onto the diagonal line, as demonstrated. Vertical (horizontal) 
edges of the contour become black (white) particles. Furthermore, the 
dynamic rules we used for the shrinking single-quadrant problem 
reproduce the diffusive process of these particles. It is straightforward to see 
that the "area lost" in the previous problem equals the total net number of 
steps taken by black particles in the right (x) direction. 

The diffusive process described above treats a single pair of sites at a 
time. It is easy to define a closely related problem, in which pairs are 
treated in parallel, and which has the same physics. To do this, pair all 
neighboring sites: This can be done in two ways (denoted A and B), with 
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either the even- or the odd-indexed sites at the left side of every pair  (see 
Fig. 8a). We choose pairing A at even time steps and B at odd time steps. 
At each time step, at tempts to exchange the particles within the 
appropr ia te  pairs are allowed. (21) The diffusion problem is now represented 
as a one-dimensional  probabilistic cellular au tomaton.  The time develop- 
ment  of such an a u t o m a t o n  is equivalent to an equilibrium problem in 
d =  2 dimensions, (22) which we now identify as a particular case of  the six- 
vertex model. 

To see how this mapping  comes about,  consider Fig. 8. The particle 
configurat ion present at some time step is depicted on horizontal  lines, 
with (black and white) particles represented by arrows. Time is running 
upward;  the state of the system at the next time step is represented by the 
next horizontal  row, above the present one (see Fig. 8b). To describe the 
dynamics,  assign to each site an edge, or line segment, whose center is 
placed at the corresponding site. The orientat ion of  each edge reflects the 

a=l b:p e c=l-p e 
X X XX 

(c) 

t = l ~  B 

t=O A 

(b) 

o l o  ~  o 1 ~  o 1 ~  B 

I o  o l o  o l o  o l o  o [ A  
(a) 

Fig. 8 (a) Two different partitionings, A and B, of a linear chain, occupied by black and 
white particles, into paired neighboring sites. (b) Representing black (white) particles by up- 
(down-) pointing arrows. Every horizontal cut presents a snapshot of the particles at a given 
time step. The arrows are placed on line segments; segments associated with paired neigh- 
boring sites meet at a vertex above the current time step. (c) At each vertex an exchange of 
particles may take place, giving rise to a new configuration. The probabilities of all possible 
processes are identified as the standard weights of the corresponding six-vertex model. 
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pairing (A or B) of the present time step, in that the edges running through 
paired sites meet above the current time slice. Evidently this representation 
automatically reproduces the change of pairing of neighboring sites after 
each time step. Pairs of edges meet at a vertex, at which exchange of par- 
ticles may take place. A black particle is represented by an arrow that 
points up (and left or right), whereas white particles by arrows that point 
down (and right or left). Two edges emerge from each vertex; the centers 
of these edges are again at the sites of our (one-dimensional) lattice of 
diffusing particles. The state of the arrows at the centers of these emerging 
edges represents the particle configuration at the next time step. 

The new particle or arrow configuration is the result of "collisions," or 
particle exchanges, that took place at each vertex. In order to reproduce 
the dynamics of our diffusion problem, we choose the following rules for 
these collisions: 

1. If the two particles incident on a vertex are the same (both arrows 
up or both down), the emergent state is identical to the incident 
o n e .  

2. If the two particles are different, they are either exchanged, with 
probability Pe, or not, with probability 1 -Pe -  

These rules reproduce precisely the diffusion problem with parallel 
dynamics. On the other hand, the space-time history of the particle system 
is now mapped onto a configuration of arrows on the edges of a square 
lattice. It is easy to see that the rules listed above give rise to six allowed 
vertices, with nonvanishing weights, shown in Fig. 8c. The probability of 
observing any configuration of arrows (or the corresponding space-time 
history of the diffusing particles) is given, as in the standard six-vertex 
model, by the product of the weights of all the vertices in the configuration. 
It is interesting to note that our diffusion problem maps onto a critical six- 
vertex model. (23) Solution of this vertex model, and its implications for the 
diffusion problem, will be presented elsewhereJ 24~ 

4. S U M M A R Y  

We considered the dynamics of an Ising system at its coexistence 
( H =  0) line, below the transition point. We argued that the dynamics with 
no conserved quantity is governed by the manner in which finite domains 
shrink. This problem, in turn, can be studied at zero temperature without 
losing the important physical property of length scaling as the square root 
of time, 

L ~ t ~/2 
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This re la t ionship  can also be viewed as a s ta tement  on the lifetimes of finite 
domains ,  e.g., that  the lifetime should  be p r o p o r t i o n a l  to the doma ins '  area. 
We have der ived such a re la t ionship  r igorously.  We also solved the t ime 
evolu t ion  of an infinite quadran t .  We  have shown that  the area  lost  by the 
q u a d r a n t  grows l inear ly  with time, and  that  the t ime it takes for the area  
lost  to reach the value A for the first t ime is p r o p o r t i o n a l  to A. Fu r the r -  
more,  we m a p p e d  the infinite q u a d r a n t  p rob l e m at T = 0  onto  a many-  
body  diffusion p rob l em in one d imension,  which in turn can be m a p p e d  
onto  a cri t ical  six-vertex model.  
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